Вектор АВ-(-3;-4)
вектор ВА- (3;4)
1) ∠1 является односторонним углом с ∠2 при парал. прям. и сек. ⇒ сумма односторонних углов равна 180°(по св-ву). Так как ∠1 в 4 раза меньше ∠2, а сумма их равна 180, мы можем составить уравнение, приняв за х ∠1. Получим:
х+4х=180
5х=180
х=36
∠1=36°
∠2=144°
∠2=∠3(по св-ву вертикальных углов) ⇒ ∠3=144°.
2) ∠1 и ∠2 - соответственные при парал. прям. и сек. ⇒ ∠1=∠2(по св-ву)
А так как сумма их равна 100°, можно сказать, что ∠1=∠2=50°
∠3 смежен с ∠1 ⇒ сумма их равна 180(по св-ву смеж. углов) ⇒ ∠3=180°-50°=130°.
3) ∠2 равен вертикальному с ним ∠(он без названия, пусть будет ∠4)(по св-ву). Рассмотрим ∠1 и ∠4. Они односторонние при парал. прям. и сек.
⇒ их сумма равна 180. А так как ∠2=∠4 и он больше ∠1 на 90°, то можно снова составить уравнение, где х=∠1:
х+х+90=180
2Х=90
х=45
Тогда: ∠1=45°
∠4=∠2=45+90=135°
∠1=∠3(по св-ву верт. углов) ⇒ ∠3=45°
Привет, калайсын, че делаешь???
В решении используется свойство треугольников, имеющих общую высоту: площади треугольников, имеющих общую высоту относятся как основания, к которым проведена эта высота.
Сами общие высоты на рисунках не проведены.
ΔВОК и ΔВОС имеют общую высоту (из вершины В):
Sbok : Sboc = OK : OC = 10 : 45 = 2 : 9
ΔСОВ и ΔCOD имеют общую высоту (из вершины С):
Scob : Scod = BO : OD = 45 : 54 = 5 : 6
Проведем ВЕ║АС до пересечения с прямой СК.
.
ΔЕВО подобен ΔСВО по двум углам:
ЕО : ОС = ВО : OD
EO = (OC · BO) / OD
EO = (5x · 9y) / (6x ) = 45y / 6 = 15y /2
EK = EO - KO = 15y / 2 - 2y = 11y / 2
ΔEBK подобен ΔСАК по двум углам:
ВК : КА = ЕК : КС = (11y/2) : (11y) = 1 : 2
ΔCBK и ΔСАК имеют общую высоту (из вершины С):
Scbk : Scak = BK : KA = 1 : 2
Scak = 2 · Scbk = 2 · 55 = 110
Sabc = Scbk + Scak = 55 + 110 = 165