<span><span><span>не то условие прочитала( сорри
</span></span></span>
Я уже не помню какое точно правило, но оно класило, что прямая, проведенная из центра окружности, в точку пересечения 2 касательных, делит угол, образованный этими касательными пополам. Углы А и В равны 90 т.к. радиусы перпендикулярны с касательными. Угол АСО = 57/2=28.5. Значит угол АОС равен 90-28.5=62.5. Угол АОС равен углы ВОС. Значит угол АОВ равен 62.5*2=125 градусов.
Треугольник АВС равносторонний, медианы=высотам=биссктрисам, точка пересечения биссектрис О-центр вписанной окружности, проводим высоту АН на ВС=медиане, АН=АС*sin60=АС*корень3/2, АС=а, АН=а*корень3/2, медианы в точке пересечения делятся в отношении 2/1 начиная от вершины, ОН=1/3АН=(а*корень3/2)/3=а*корень3/6=радиус вписанной окружности=<span>r.
</span>r = а*корень3/6, а=6r /корень3=2r *корень3=АС=ВС=АС
если биссектриса угла при основании равна стороне треугольника, значит угол при вершине (противолежащий основанию) треугольника равен 1/2 углу при основании.
Решение. Т.к. АВС - правильный треугольник, то: а) его медианы совпадают с высотами и биссектрисами и пересекаются в его центре (центре вписанной в него окружности); б) радиус окружности, вписанной в правильный треугольник: r=a/(2*3^(1/2)) (а делённое на 2 корня из 3-х), где а - сторона треугольника.
В прямоугольном трегольнике МОК: ОК = r = 6*3^(1/2) / (2*3^(1/2)) = 3 см,
ОМ=4 см - по условию. Тогда: MK^2 = OK^2 + OM^2 = 3^2 + 4^2 = 9+16 = 25, а MK = 25^(1/2) = 5 см.
В треугольнике МВС, МК - высота. Тогда его площадь равна:
S = 1/2 * (AB * MK) = 1/2 * (6*3^(1/2) * 5) = 15 * 3^(1/2) см2 (15 корней их 3-х см квадратных)