A
|\ \
| \ \
| \ \
| \ \
| \ \
| \ \
C------- B
H
Не очень ровный рисунок, но позволяет увидеть, где какие буквы стоят.
АН-биссектриса, следовательно делит угол А пополам, тогда
угол САН= углу ВАН = 30°. угол АВС = 180°-90°-60°=30°
Рассмотрим треугольник АВН.
Так как в нем угол А= углу В ( = 30°), то он является равносторонним, следовательно АН=НВ=12 см
Нам нужно найти катет СН, так как против большего угла лежит больший катет.
Тот же треугольник АВН. Находим угол Н, он равен 180°-30°-30°=120°.
Рассмотрим углы АНС и АНВ, они смежные, следовательно угол АНС=180°-120°=60° ( это угол Н в треугольнике АНС)
Рассмотрим треугольник АНС.
Угол А в нем равен 30°, а гипотенуза = 12 см, тогда, так как против угла =30° лежит катет, равный половине гипотенузы находим катет СН, он равен 12:2=6 см
Треугольник АВС:
Катет СВ = СН + НВ = 6 см + 12 см = 18 см
Ответ: 18 см
равные углы составляют 180°
Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
Углы АВС и АСВ равны, так как лежат в одном треугольнике против равных сторон. Угол а не может быть тупым, т.к. углы АВС и АСВ больше, чем угол А, потому что угол А лежит против меньшей стороны