Все боковые грани - равносторонние треугольники. Поэтому, если провести плоскость через точка А, С и К - середину SB, то в грани SАB АК - перпендикляр на SB, точно так же и СК будет перпендикулярно SB, поэтому плоскость АСК, где К - середина SB, перпендикулярна SB, и угол АКС и есть нужный линейный угол двугранного угла между плоскостями SAB и SBC.
Поэтому угол АКС, который надо найти, равен углу при вершине в равнобедренном треугольнике АКС, АК = КС = <span>√3/2 (высоты в правильных треугольниках со стороной 1), АС = <span>√2/2 (диагональ квадрата со стороной 1).</span></span>
<span><span>(можно "забыть" о двойках в знаменателе, то есть попросту удвоить стороны, угол от этого не изменится, то есть у треугольника стороны √3 √3 и √2, надо найти угол напротив стороны √2)</span></span>
Если обозначить Ф - угол АКС, cos(Ф) = х, то по теореме косинусов
2 = 3 +3 - 2*3*x;
6*x = 4; x = 2/3;
Ф = arccos(2/3)
Просто увеличь радиус вписанной окружности в 6 раз и подели на корень из 3
a=6*корень из трех/корень из трех
Сторона будет равна 6 см.Так как он правильный то все стороны равны по 6 см.
Если а || b , а с-секущая, то
соответственные углы равны, при том, что биссектрисса делит угол на два равных угла. Тогда из этого следует, что AC||BD
Объяснение:
Из прямоугольного треугольника CDB, по теореме Пифагора
BD = x√3 .
Высота, опущенная из вершины прямого угла на гипотенузу, есть среднее пропорциональное между проекциями катетов.
CD² = BD * AD ⇔ x² = x√3 * AD ⇔ AD = x/√3
AD = x√3 / 3 = BD/3 = 1/3 * BD - доказано.
Решение на первое задание