8) Находим длины сторон.
DN = √(3² + 4² + (15 - 3)²) = √(9 +16 + 144) = √269 = 13.
DC1 = √(3² + 4²) = 5.
NC1 = 15 - 3 = 12.
cos NDC1 = (13² + 5² - 12²)/(2*13*5) = (169 + 25 - 144)/130 = 50/130=5/13.
∠NDC1 = arc cos (5/13) = 1,1760 радиан или 67,380 градуса.
9) BM =√2,
BC1 = 2√2,
MC1 = √(1² + 2² + 1²) = √6.
cos BMC1 = ((√2)² + (2√2)² - (√6)²)/(2*√2*2√2) = 4/8 = 1/2.
∠BMC1 = arc cos (1/2) = 60 градусов.
Предположим, что это ромб АВСД, тогда АС=4 корня из 3, а угол В - 60 градусов. Диагонали ромба пересекаются в точке О. Диагонали ромба делят его углы пополам тогда угол АВО=30. Диагонали ромба пересекаются под прямым углом. Треугольник АВО-прямоугольный, катет АО=0,5 (диагонали ромба в точке пересечения делятся пополам) АС=0,5*4 корня из 3=2 корня из 3. Найдем АВ=2*АО (В прямоугольном треугольнике против угла АВО в 30 градусов лежит катет АО равный половине гипотенузы АВ) АВ=2*2 корня из 3=4 корня из 3. Найдем ВО (это половина диагонали ВД), по теореме Пифагора ВО=АВ в квадрате-АО в квадрате все под корнем. В цифрах так: 4 корня из 3 в квадрате-2 корня из 3 в квадрате все под корнем=6. Тогда ВД=12. S=0,5*АС*ВД=0,5*4 корня из 3*12=24 корней из 3.
З Δ КСМ КС = √(2- 1)²+ 4² = √17 ≈ 4,1
КМ = √1 = 1, СМ = √4² = 4
за теоремою косинусів:
cos M =( KM² +CM² - KC²)/ 2 KM*CM = 0, cos M = 90°
Відповідь: 90°
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны
Если KR=2, то периметр 16