У параллелограмма сумма углов при боковых сторонах =180 гр. и противолеж углы равны. Значит угол D=180-37=143 гр.
угол Д=В=143 гр.
угол С=А=37 гр.
<em>1) </em>В данном случае диагональ квадрата - это и есть диаметр описанной окружности и равен двум радиусам:
<em>2) </em>В этом случае, наоборот, сторона квадрата - это диаметр вписанной окружности, а радиус равен половине диаметра (или стороны):
см
<em>3) </em>Смотрим третий рисунок:
ABCD - прямоугольник, АВ=15, О - точка пересечения диагоналей, ∠АОВ=60°
Известно, что диагонали прямоугольника равны и точкой пересечения делятся пополам, значит АО=ОВ, то есть ΔАОВ - равнобедренный. Но если угол при вершине равен 60°, то и углы при основании равны:
Значит ΔАОВ - равносторонний, АО=ОВ=ВС=15 см.
Радиус описанной окружности в данном случае равен половине диагонали, то есть АО или ОВ:
см
Т.к. в основании лежит правильный треугольник (обозначим его ABC),
то его углы =60°,центр впианной окружности -точка пересечения биссектрис треугольника ABC, обозначим О.Значит уголОАВ=30°.В треугольнике АОВ ОН-высота(лежит против угла 30°) равна радиусу вписанной окружности=6, отсюда ОА=12.ИЗ треугольника SAO (S-вершина) по т.Пифагора находим высоту
SO2=AS2-AO2
SO=√(152-122)=9
Ответ:9
АВСД параллелограм, СМ-биссектриса углаС, уголМСВ=уголМСД=1/2уголС, уголВМС=уголМСД как внутренние разносторонние, треугольник ВМС равнобедренный, МИ=ВС=8=АД, АВ=СД=АМ+МВ=2+8=10, периметр=10+8+10+8=36
судя по всему функция имеет вид:
у = (х-1)(х-5) = х^2 - 6х + 5
точка пересечения с осью ОУ имеет абсциссу х=0, следовательно, у=5...
все это вычисляется...