1) у(у-1)+2(у-1) = (у-1)(у+2)
2) ах-ау+2х-2у = (ах-ау)+(2х-2у) = а(х-у)+2(х-у) = (х-у)(а+2)
3) х²-64 = х²-8² = (х-8)(х+8)
4) 9а²-16b² = (3a)²-(4b)² = (3a-4b)(3a+4b)
5) х³+у³ = (х+у)(х²-ху+у²)
6) х³+1 = (х+1)(х²-х+1)
7) m³+27 = m³+3³ = (m+3)(m³-3m+9)
8) 8+c³ = 2³+c³ = (2+c)(4-2c+c²)
9) у³ + 1/8 = у³ + (1/2)³ = (у+1/2)(у²- у/2 + 1/4)
10) 8/27 + z³ = (2/3)³+z³ = (2/3 + z)(4/9 - 2z/3 + z²)
5х-7.5=0
5х=7.5
х= 7.5 : 5
х= 1.5
Ответ:
Объяснение: 1) S=∫₋₃⁻¹(-x²-2x+5-(-x²-6x-7))dx+∫₋₁¹(-x²-2x+5-2x)dx=
=∫₋₃⁻¹(4x+12)dx+∫₋₁¹(-x²-4x+5)dx=4(1/2x²+3x)║₋₃⁻¹+(-1/3x³-
-4·1/2x²+5x)║₋₁¹=4·((1/2·(-1)²+3·(-1)-1/2·(-3)²-3·(-3))+(-1/3·1³-2·1²+5·1-
-(-1/3)·(-1)³+2·(-1)²-5·(-1))=4·(1/2-3-9/2+9)+(-1/3-2+5-1/3+2+5)=8+9-2/3=
=16+1/3 (ед²)
2) S=∫₋₁¹(2x+5-x²+2x)dx+∫₁³(x²-6x+12-x²+2x)dx=∫₋₁¹(-x²+4x+5)dx+
+∫₁³(-4x+12)dx=((-1/3)x³+4·1/2·x²+5x)║₋₁¹+((-4)·1/2·x²+12x)║₁³=
=(-1/3+2+5-1/3-2+5)+(-18+36+2-12)=10-2/3+8=17+1/3 (ед²)