1)
Дана прямая призма ABCDA1B1C1D1.
ABCD-ромб (AB=BC=CD=AD=12). Угол BAD=60 гр, следовательно угол АВС=120.
Проведем прямые BD и B1D1, образующие квадрат.
Расмотрим треугольник ABD - равносторонний, т.к. угол ABD=60 гр (120/2 диагональ ромба является бисс-й). AB=BD=AD=12.
Vпр = S*h
Sосн = AD^2 * sin 60 = 144 * корень из / 2 = 72 корня из 3.
BB1D1D-квадрат. BD=DD1=12. DD1-высота призмы
V=12 * 72 корня из 3 = 864 корня из 3.
2)
Vпр=S*h
S=AD*BK=10*5=50
Рассмотрим треугольник B1BK-прямоугольный.
BB1^2 = B1K^2 - BK^2
BB1=12
V=12*50=600
Пусть точка пересечения касательной и окружности = К. Треугольник АКВ- прямоугольный ( Свойство касательной к окружности , проведённой из данной точки , лежащей вне окружности ) , причём угол К=90 град .
Катет АК=R=80 , гипотенуза АВ=АС+СВ=80+2=82
По теореме Пифагора : ВК²=АВ²-АК² ВК²=82²-80²=6724-6400=324
ВК=√324=18
Ответ: 18
ABCD трапеция,BM и CN высоты
AM=x⇒MD=13-x
BM²=BD²-MD²=256-(13-x)²
AN=x+7
CN²=AC²-AN²=144-(7+x)²
256-169+26x-x²=144-49-14x-x²
26x-x²+14x+x²=95-87
40x=8
x=0,2
CN²=144-7,2²=144-51,84=92,16⇒CN=9,6
S=(13+7)*9,6/2=9,6*10=96см²
Дано: параллелограмм АВСД
ВF.-бис-са
(назовем точку К точкой F)
АF.:FД=3части:2части
ав=12
найти: Р
рассмотрим параллелограмм.
ВF. - биссекстриса. По свойству параллелограмма, биссектриса отсекает равнобедренный треугольник. Получается, что АВ=АF.
по условию, АВ=12. Следовательно, АF.=12.
АF. = 3 части (по условию). 1 часть=АF./3= 4.
АД= АF.+FД=3+2=5 частей.
АД=5*4=20
Подробнее - на Znanija.com - znanija.com/task/25772496#readmore