Или расположить спички в форме тетраэдра, получается 4 треугольника в виде граней трёхмерной фигуры. То есть ответом на задачу может быть вот такая геометрическая фигура.
Аааааа аааааааааааааа аааааааааааааа
координаты середины отрезка равны полусумме координат его концов (похоже на среднее арифметическое соответствующих координат) Складываете Хсы и делите на два, затем скложить Уки, тоже поделить на два.
<span>Искомый угол - угол ВАМ в ∆ ВАМ, где ВМ и АМ- катеты, АВ - гипотенуза. </span>
<span>Проведем высоту параллелограмма - перпендикуляр СТ к продолжению АD. </span>
<span>CD=AB=4, угол СDТ=углу ВАD=30° </span>
СТ=СD• sin30° =4<span>•1/2=2 </span>
<span>СН </span>⊥<span>плоскости </span>β<span>, НТ</span>⊥<span>DТ. </span>
∠<span>СТН=45° по условию, откуда СН=2</span>•sin45°=√2
ВС параллельна плоскости β, все ее точки одинаково удалены от неё.
ВМ=СН=√2
<span>sin BAM=BM:AB=(√2):4=0,35355 </span>
<span>Ответ: arcos 0,35355 . Это угол 20°42'</span>
Проводим ВВ₁ || OO₁
Треугольник АВВ₁ - прямоугольный
АВ₁=8 ( по теореме Пифагора) или потому то это египетский треугольник
АВ₁²=АВ²-ВВ₁²=10²-6²=64=8²
Рассмотрим треугольник АОВ₁ ( см рисунок справа)
Равнобедренный треугольник. проведем высоту ОК. По теореме Пифагора
ОК=3.
Или потому что треугольник АОК - египетский
ОК- расстояние между плоскостью, содержащей отрезок АВ и плоскостью, содержащей ось ОО₁