пирамида КАВС, К-вершина АВС прямоугольный треугольник , уголС=90, ВС=6, АС=8, АВ=корень(ВС в квадрате+АС в квадрате)=корень(36+64)=10, О-центр описанной окружности лежит на середине АВ, КО-высота пирамиды, АО=ВО=радиус=1/2АВ=10/2=5, проводим медиану СО, в прямоугольном треугольнике медиана, проведенная к гипотенузе=1/2гипотенузы=1/2АВ=радиус=10/2=5, КС=КА=КВ=5*корень5
треугольник КСО прямоугольный, КО=корень(КС в квадрате-СО в квадрате)=корень(125-25)=10 - высота пирамиды
R=AC/2*sinB
sinB=AC/AB=5/13 (AB²=AC²+BC², AB=13 см)
R=5/(2*5/13)=6,5 см
............................
Пусть АВ и АС - касательные из точки А к окружности с центром в О.
Пусть М - точка пересечения отрезка АО и АМ. Тогда АМ - кратчайшее расстояние от А до окружности. По условию АМ = ОМ = ОВ = r, где r - радиус окружности.
По ствойству касательной к окружности ОВ⊥АВ ⇒ ΔАОВ - прямоугольный, в котором гипотенуза ОА в 2 раза больше катета ОВ ⇒ ∠ОАВ = 30°.
Как известно, центр окружности, вписанной в угол, лежит на биссектрисе этого угла. Поэтому ∠ВАС = 2·30° = 60°.
Ответ: 60°.