Насколько мне помнится, то тут нужно решать объяснениями, если да то: Пусть O — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности — это точка пересечения биссектрис, поэтому — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём
Отрезки и OK равны как радиусы вписанной в треугольник ABC окружности, то есть Рассмотрим треугольники ALO и AOK, они прямоугольные, углы LAO и OAK равны, AO — общая, следовательно, треугольники равны, откуда Аналогично из равенства треугольников COM и COK получаем а из равенства треугольников BOL и BOM — Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:
Площадь параллелограмма равна произведению высоты на основание:
Рассмотрим треугольники ABC и ACD, AB равно CD, AD равно BC, углы ABC и ADC равны, следовательно, треугольники ABC и ACD равны. Поэтому площадь треугольника ABC равна половине площади параллелограмма т.е 168
Вооот. Учи геометрию, она топп
Неверно. Если эти прямые на плоскости параллельны, и прямая им перпендикулярна, то она лежит в плоскости и не перпендикулярна ей.
<em>Прямая перпендикулярна </em><em>плоскости, </em><em>если она перпендикулярна </em><em>двум </em><u><em>пересекающимся </em></u><em>прямым плоскости.</em>