6sin²x-5sinxcosx+cos²x=0
Разделим на cos²x
6*tg²x-5*tgx+1=0
Введём замену переменной tgx=t
6t²-5t+1=0 Решаем это уравнение.
Дискриминант D=(-5)²-4*6*1=25-24=1
Находим корни: t₁=(5-1)/12=4/12=1/3 и t₂=(5+1)/12=6/12=1/2
Получили
tgx=1/3 x=arctg1/3+πn, n∈Z
tgx=1/2 x=arctg1/2+πn, n∈Z
2sin²x-sinxcosx=0
Делим на cos²x
2tg²x-tgx=0
tgx вынесем за скобки
tgx(2tgx-1)=0
Произведение равно 0 когда один или оба множителя равны 0
tgx=0 x=πn, n∈Z
2tgx-1=0 2tgx=1 tgx=1/2 x=arctg1/2+πn, n∈Z
4sin²x-2sinxcosx-4cos²x=1
sin²x+cos²x=1 - одна из основных тригонометрических формул
4sin²x-2sinxcosx-4cos²x=sin²x+cos²x
4sin²x-sin²x-2sinxcosx-4cos²x-cosx=0
3sin²x-2sinxcosx-5cos²x=0
Разделим на cos²x
3tg²x-2tgx-5=0
Введём переменную tgx=t
3t²-2t-3=0
D=(-2)²-4*3*(-5)=4+60=64
x₁=(2-8)/6=-1 x₂=(2+8)/6=5/3
tgx=-1 x=(5/4)π+πn, n∈Z
tgx=5/3 x=arctg(5/3)+πn, n∈Z
последовательность представляет кусочную функцию квадратного
трехчлена. наименьшее значение он принимает в точке -b/2a,
т.е. 21/6=3,5
n=3 C(3)=4+27-63=-32
n=4 c(4)=4+3*16-84=-29
ответ наименьший член последовательности
С(3)=-32
перенесём все x в одну сторону, получим 6x-4x=5
2x = 5
x = 2,5
Ответ в приложении
____________________________