Вот. Вроде так...............
А | \ у тебя получится такой угол: <u /> СВ=4 клеточки, а АС=3 клеточек,
| \ рисунок в точности должен быть, как я сделала
| \
С |__a\В
Пусть SO высота пирамиды.
Для грани SAB построим линейный угол двугранного угла. Для этого проведем из точки О перпендикуляр ОН к ребру основания АВ. ОН - проекция SH на плоскость основания, значит SH⊥AB по теореме о трех перпендикулярах.
∠SHO = 60° - линейный угол двугранного угла.
Аналогично строим линейные углы наклона всех боковых граней.
SΔaob = АВ · ОН / 2
SΔsab = AB · SH / 2
Saob / Ssab = OH / SH = cos∠SHO = cos60° = 1/2
Saob = Ssab/2
Так как все боковые грани наклонены под одним углом, для каждой боковой грани и ее проекции мы получим такое же отношение.
Значит, площадь основания равна половине площади боковой поверхности:
Sосн = Sбок/2 = 36/2 = 18
1) Количество граней = n + 2.
n - боковые грани, 2 - основания призмы.
2) Количество ребер = 3n.
Если посмотреть на любую призму, то сразу видно, что из любой вершины выходит по 3 ребра - 1 боковое и 2 в основании.
3) Количество вершин = 2n.
У каждого основания будет n вершин (например, у шестиугольника их 6), а всего оснований у нас 2.
__________________________________________________
Треугольная призма имеет 3 + 2 = 5 граней, 3 * 3 = 9 ребер и 2 * 3 = 6 вершин.
Четырехугольная призма имеет 4 + 2 = 6 граней, 3 * 4 = 12 ребер и 2 * 4 = 8 вершин.
Шестиугольная призма имеет 6 + 2 = 8 граней, 3 * 6 = 18 ребер и 2 * 6 = 12 вершин.