Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 50.
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=50
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=50
2n+1+2n+5=50
4n=44
n=11
11; 12; 13; 14
(14²-13²)+(12²-11²)=27+23
27+23=50 - верно
Подробнее - на Znanija.com - znanija.com/task/31864181#readmore
Корень 7 при условии, что а+6=4
а=-2
N5
<span>xЄ(6, 8)
x</span>Є(-∞,-2) U (9, +<span>∞)
</span><span>(в системе)
N3
x^2+x-6>0
x^2-12x+36>0
(в системе)
х^2+x-6<0
x^2-12x+36<3
(в системе)
x</span>Є(-∞, -3) U (2,6) U (6, +∞)<span>
</span>
25+33°6=223
Там 20 символов должно быть я напишу ещё что то