Ответ:
График линейной функции y₁ = -x - 4 будет симметричен графику линейной функции y = x + 4 относительно оси OX. Оба графика являются прямыми линиями.
Решение.
Функция y = x + 4 является линейной функцией, ее график прямая линия, область определения ее множество всех чисел D(y) = (-∞; ∞), коэффициент k = 1, k >0 график пройдет через I - III четверти.
Для построения прямой достаточно найти координаты двух точек графика: при x = 0, y = 4; при x = -4, y = 0.
По условию луч OX является осью симметрии. При осевой симметрии прямые переходят в прямые.
⇒ фигура, симметричная графику функции y = x + 4 также будет являться прямой, которая описывается формулой y₁ = -x - 4.
Точки A и B, симметричные относительно оси OX (лежат на одном перпендикуляре к оси OX на равных расстояниях от нее).
Точка A(0;4) перейдет в симметричную ей точку B(0;-4).
Точка С(-4;0) лежит на оси OX и отобразится сама на себя.
Плохое качество сделай другую фотку
Составляем пропорцию
5х+4х=90
9х=90
х=10
углы 50 и 40
АД - медиана, М∈АД, СД=ВД.
В треугольнике САД прямая КМ пересекает стороны АС и АД в точках К и М и пересекает продолжение стороны СД в точке В, значит по теореме Менелая можно записать тождество:
(СВ/ВД)·(МД/АМ)·(АК/КС)=1,
(2ВД/ВД)·(2/1)·(АК/КС)=1,
4АК/КС=1,
АК:КС=1:4 - это ответ.