АВСД - прямоугольник, О - точка пересечения диагоналей АС и ВД
<span>Тр-к АОВ -равнобедренный , ОВ =ОА ( диагонали равны и в точке пересечения делятся пополам) </span>
<span>угол АВО = (180 -80)/2 =50 градусов ( в равнобелренном тр-ке углы при основании равны) </span>
Проводишь из этой точки пер-ляр к плоскости, получаешь прямоугольний треугольник. Этот перпендикуляр противолежащий угла 45 -> он равен произведению наклонной на косинус угла, т.е. 28*корень из 2/2 = 14 корней из 2. А угол между наклонной и плоскостью будет равен углу между наклонной к ее проекции на эту плоскость -> 45
Пусть O- точка пересечения диагоналей AC и BD - начало координат
Ось X - OA
Ось Y - OB
Ось Z - OO1
Координаты точек
A(3;0;0)
B1(0;6;<span>√15)
D1(0;-6;</span><span>√15)
C(-3;0;0)
Направляющий вектор AB1(-3;6;</span><span>√15)
</span>Направляющий вектор D1C(-3;6;-√15)
Косинус угла между AB1 и D1С равен
| 9 + 36 -15 | / (9+36+15) = 1/2
Угол 60 градусов
Обозначим сторону основания а, высоту призмы Н, высоту сечения h.
Проекция высоты сечения h на основание - это высота основания СD.
CD = a√3/2. Тогда высота призмы как катет, лежащий против угла 60 градусов, равна (a√3/2)*tg 60° = (a√3/2)*√3 = 3a/2.
Теперь определим высоту сечения h.
h = CD/cos 60° = (a√3/2)/(1/2) = a√3.
Площадь сечения как треугольника равна:
S(AC1B) = (1/2)a*h = (1/2)a*(a√3) = a²√3/2.
Приравняем заданному значению: a²√3/2 = 8√3, a² = 16, a = 4.
Можно получить ответ:
V = SoH = (a²√3/4)*(3a/2) = 3a³√3/8 = 3*64*√3/8 = 24√3 см³.