ЕВ∈α, ДС||α ⇒ ЕВ||ВС.
треуг АДС подобен ЕАВ ( т.к угол а -общий,остальные углы соответственные при параллельных прямых ДС и ЕВ)
АС:АВ=ДС:ЕВ
3:7=12:ЕВ⇒ЕВ= (7*12)\3=28
ответ: ВЕ=28
Взломал задачу по геометрии. Информация про AB нам не нужна.
Средняя линия треугольника равна половине AC=>AF=6см.
AD=2x, AF=3x.
x=2
=> AD=4см
Пусть ABCD - параллелограмм, АВ = 3, ВС = 4, ∠А = 60°, BD-?
1) Проведём высоту ВК. ΔАВК. АК = 1,5 ( катет, лежащий против угла 30°), КD = 2,5 (4 - 1,5)
2) ΔABK по т. Пифагора ВК² =3² - 1,5² = 9 - 9/4= 27/4. ВК = 3√3/2
3) ΔBDK по т. Пифагора BD² = BK² + KD² = 27/4 + 25/4 = 52/4, BD = √13
<ACD=<AMN=28°
<BCD=180°-28°=152°
<DCE=1/2*<BCD=152°:2=76°
<ACE=<ACD+<DCE=28°+76°=104°
Найдём S основания цилиндра. Основанием цилиндра является круг.
см².
Таких оснований два. Значит нужно умножать на два
16π*2=32π <span>см².
Осталось вычисление площади боковой поверхности цилиндра.
Теперь длина высоты равна 5 см и длина окружности равна </span>
см.
<span>
Площадь боковой поверхности цилиндра
8</span>π*5=40π <span>см²
</span><span>
Сложим вместе площади всех оснований
32</span>π+40π=72π <span>см²
</span><span>
Ответ: </span>72π <span>см² - площадь всей поверхности цилиндра.</span><span>
</span>