AB || CD ; AB =12 ; AD =6 ; ∠A=∠B=90°.
-----
S(ABC) =S(ABD) -? S(ADC) =S(DCB) -?
Проведем CE ⊥AB , (E∈[AB]) DF ⊥AB , и (F∈[AB]) .
CE = DF =h (высота трапеции).
Треугольники AFD и BEC равнобедренные и прямоугольные (∠A=∠B=90°).
CE = BE =DF =AF =h .
Из ΔAFD по теореме Пифагора:
2h² =7² ⇒ h =7√2 / 2 . CD =AB -2AF = 12 -7√2 .
---
S₁ =S(ABC) =S(ABD) =AB*h/2 =12*(7√2/4) =21√2.
S₂ = S(ADC) =S(DCB) =DC*h/2 =(12-7√2)7√2/4 =21√2 -49/2.
Угол MKN=34 градуса т.к. равен половине угла MON по теореме о вписанных углах.
Ответ:
Объяснение:
Для решения данной задачи давайте рассуждать логично-
НЕ МОЖЕТ быть правильный многоугольник из данного, если из одну вершину мы соединим , например , с пятой вершиной по часовой стрелке, а против часовой - с шестой. Тогда стороны не тбудут равными. Это дает нам ключ к решению задачи.
Значит, первый многоугольник получается, если мы соединим вершины через одну, т.е. каждую вторую.
1)Получится 60/2=30-угольник.
2)Потом 60/3=20 угольник. И так далее, берем делители числа 60
3) 60/4=15
4) 60/5=12
5) 60/6=10
6) 60/10=6
7) 60/12=5
8) 60/15=4
9) 60/20=3
Итого - 9 многоугольников
PQ + QA=PA
PA + AE= PE
PE+ EF=PF
Противоположные стороны прямоугольника равны, отсюда:
АВ = CD = √1.19
ВD - диагональ.
Диагональ прямоугольника разбивает его на два равных прямоугольных треугольника, в каждом из которых стороны - катеты, диагональ - гипотенуза, отсюда, по теореме Пифагора:
Ответ: 1,2