Ответ: два решения (одно для остроугольного треугольника, другое для тупоугольного...)
1) Р = 256 (см)
2) Р = 56V21 (см)
Объяснение: треугольник АВС, основание ВС=2а (чтобы не возиться с дробями); АВ=АС=b
P = 2a+2b = 2(a+b)
а=b*cos(B); по т.синусов: b=2R*sin(B)
S = 2a*h/2 = ah; h = b*sin(B)
S = P*r/2 = (a+b)*r
(a+b)*r = ab*sin(B)
b(1+cos(B))*r = b*b*sin(B)*cos(B)
(1+cos(B))*r = 2R*sin^2(B)*cos(B)
r/(2R) = (1-cos(B))*cos(B)
обозначим х=cos(B)
x^2 - x + (6/25) = 0
(5x)^2 - 5*(5x) + 6 = 0
по т.Виета корни (3) и (2)
5х=3 ---> х = 0.6
---> sin(B) = V(1-0.36) = 0.8 или
5х=2 ---> х = 0.4
---> sin(B) = V(1-0.16) = 0.2V21
b = 2*50*0.8 = 80 или
b = 2*50*0.2V21 = 20V21
a = 80*0.6 = 48 или
а = 20V21*0.4 = 8V21
P = 2*(80+48) = 128*2 = 256 или
Р = 2*(20+8)*V21 = 56V21
Нижнее основание = 30 (средняя линия = полусумма оснований)
Из нижнего основания вычтем верхнее и разделим получившееся число на 2. Я прикрепила рисункок, чтобы вы поняли, зачем. Дальше все по теореме Пифагора
Все четыре стороны квадрата одинаковы
по длинне, значит они равны:
AB = BC = CD = AD
Площадь трапеции равна произведению полусуммы оснований на высоту
Найдём сначала длину диагонали. Обозначим её за х. Исходя из того, что она делит трапецию на два подобных треугольника, получим:
4/х = х/9
х•х = 4•9
х² = 36
х = 6 см.
Значит, диагональ равна 6 см.
Длина окружности равна l = 2πr.
Радиус вписанной окружности равен r = S/p.
Площади подобных треугольников будут относиться так же, как м квадрат коэффициента подобия, полупериметры будут относиться как коэффициент подобия (p - полупериметр).
Тогда r1/r2 = k.
Коэффициент подобия равен 4/6 = 2/3.
Тогда радиус меньшей окружности будет относиться к радиусу большей окружности как 2:3 и => длины окружностей будут относиться так же, как и радиусы. lмень = 18/3 • 2 = 12.
Ответ: 12.