X+5+x=50/2
2x+5=25
2x=20
x=10 одна сторона
10+5=15 вторая
1) Опустим высоты трапеции на большее основание. Большее основание разбилось на три отрезка: х, 6, х.
2) Рассмотрим один из образовавшихся прямоугольных треугольников. Один острый угол его равен 135-90=45 градусов, значит второй острый угол его равен 90-45=45 градусов, т.е. получили равнобедренный прямоугольный тр-к с катетами х и высота h. Т.е. x=h.
3) По условию большее основание в 3 раза больше высоты, значит x+6+x=3h,
h+6+h=3h, 2h+6=3h, h=6. А нижнее основание тогда равно 3*6=18 (см).
4) Площадь трапеции равна произведению полусуммы оснований на высоту:
S=((6+18)/2)*6=12*6=72 (см^2)
∠ABC = 180° - (45° + 30°) = 105°
По теореме синусов:
a : sin 45° = c : sin 30°
a = c · √2/2 : (1/2) = c√2
b : sin 105° = c : sin 30°
Найдем sin 105° :
sin 105° = sin (90° + 15°) = cos 15°
b = c · sin105° : sin 30° = 2c · 1/2 · (√3 + 1)/√2 = c · (√3 + 1)/√2
m² = (b² + c²)/2 - a²/4
m² = (c · (√3 + 1)/√2)²/2 + c²/2 - 2c²/4 = c²(√3 + 1)²/4
m = c · (√3 + 1)/2 = b/√2
По теореме синусов из ΔАМС:
m : sin 30° = b : sinα
sinα = 1/2 · b / m = b/(2m) = b / (2 · b/√2) = √2/2
Так как α тупой угол,
α = 135°
Ответ:3:5 24 тогда так 24*3:5 и вот ответ