Пусть угол М = х, угол К = у.
Треугольники МАВ и КСВ - равнобедренные.
По свойству внешнего угла угол А = 2х, угол С = 2у,
Из треугольника АВС имеем А + В = 180 - β = 2х + 2у = 2(х + у).
Откуда х + у = (180 - β)/2 = 90 - (β/2).
Из треугольника ВМК искомый угол МВК равен:
Угол МВК = 180 - (х + у) = 180 - (90 - (β/2)) = 90 + (β/2).
Прямые M и К не пересекаются ,т.к прямая А лежит в плоскости а,а прямая В лежит в плоскости в.А так как плоскости паралельны,значит и прямые не пересекаются
Нет, не верно. Через точку не лежащую на данной прямой можно провести только одну ПРЯМУЮ. Но в этой точке эта прямая делится на два противоположных луча. И каждаый из них лежит на параллельной прямой и параллелен исходной прямой.
МОЖНО ПРОВЕСТИ ДВА луча.
1) Достроим треугольник до треугольника АСМ, добавив равный ему, где АВ=ВМ, СМ=АС. Тогда СМ=АМ=АС, и треугольник АСМ - равносторонний (т.к. АС=2 АВ).
Все углы равностороннего треугольника равны 60º
∠САВ=60º
АЕ- биссектриса, и ∠ САЕ=∠ЕАВ=∠АСЕ=30º , а ∠СВА=180º-(60º+30º)=90º
------------------------------
2) В равнобедренном треугольнике АЕС ( по условию)
проведем высоту ( медиану) ЕН.
АН=НС=АВ
В треугольниках ЕАН и ЕАВ
<span>∠НАЕ=∠ЕАВ по условию
</span>АН=АВ
сторона АЕ - общая
Треугольники НАЕ и ЕАВ равны по первому признаку.
<span>∠ ЕНА= ∠ЕНС=90º по построению
</span>Отсюда угол АВЕ=АНЕ=90º
Треугольник АВС - прямоугольный с прямым углом В
Сумма острых углов прямоугольного треугольника равна 90º
<span>∠ ЕАС=∠ЕСА ⇒
</span><span><span>Так как АЕ биссектриса </span>∠ВАС, то ∠ВАС=2∠АСВ
</span><span>∠ АСВ+∠САМ= 3 ∠ АСВ
</span><span>∠ АСВ=90º:3=30º
</span><span>∠ САВ=2∠<span>САВ=60º
-------------------------------
3)
</span></span><span> АЕ=СЕ, следовательно, треугольник АСЕ - равнобедренный, угол САЕ=АСЕ. Достроим треугольник АВС равным ему, где боковая сторона равна АС, а основание равно АВ.
Тогда в нем АЕ=ЕС, и ЕС является биссектрисой угла С.
В новом треугольнике биссектрисы точкой пересечения делятся на равные части ( считая от вершин).
АВ=1/2АС, а основание нового треугольника равно АС, боковые стороны тоже в нем равны.
Так как АС=2АВ, ∠ АСВ=30°, отсюда ∠ВАС=60°.
<em><u>Треугольник АВС - прямоугольный с прямым углом В.</u></em></span>