х-большая сторона. у - меньшая сторона.
48-18=30 см - сумма двух оставшихся неизвестных сторон
система:
х-у=10
х+у=30
х=10+у
10+у+у=30
2у=30-10
2у=20
у=10
х=10+10=20
Основанием четырёхугольной пирамиды SABCD является прямоугольник ABCD, где AB = 2√3, BC = 2√6. Основание высоты пирамиды - это центр прямоугольника. Из вершин А и С опущены перпендикуляры АР и CQ к ребру SB.
1. Докажите, что P - середина отрезка BQ
2. Найдите угол между гранями SBA и SBC, если SD = 6
Боковые ребра пирамиды равны (так как вершина проецируется в центр основания).
Значит АS=BS=CS=DS=6.
Грани - равнобедренные треугольники.
а) Рассмотрим равнобедренный треугольник АSВ. В нем высота SH1, опущенная на основание AB по Пифагору равна SH1=√(SA²-AH1²)= √33.
Соответственно, площадь грани АSB равна Sasb=(1/2)*AB*SH1=√99.
Тогда АМ (высота к боковой стороне BS) равна АP=2Sasb/SB или
АP=2√99/6=√99/3. МВ по Пифагору равно PВ=√(АВ²-АP²) или
PВ=√(12-99/9)=√(9/9)=1.
Точно также в треугольнике ВSC имеем:
SH2=√(36-6)=√30.
Sbsc=(1/2)*BC*SH2=√6*√30=6√5.
CQ=2Sbsc/SC или CQ=2√5. Тогда
BQ=√(BC²-CQ²) или BQ=√(24-20)=√4=2.
Итак, доказано, что BQ=2*BP, то есть точка P - середина BQ.
б) Двугранные углы измеряются линейным углом, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру. Таким образом, чтобы измерить двугранный угол, можно взять любую точку на его ребре и
перпендикулярно ребру провести из неё лучи в каждую из граней.
Возьмем на ребре BS точку Р и проведем из нее в гранях ASB и CSB
перпендикуляры. Один из них нам уже знаком - это отрезок АP. Второй - отрезок РK, который будет параллелен отрезку СQ и равен его половине (так как PK - средняя линия треугольника BQC, поскольку точка P - середина отрезка BQ - доказано выше). По Пифагору АK=√(АВ²+ВK²) или АK=√(12+6)=3√2.
Тогда по теореме косинусов искомый угол АPK равен:
Cosα = (b²+c²-a²)/2bc. Или
Cosα = (АP²+PK²-AK²)/2*АP*PK.
Cosα = (99/9+5-18)/(2*(√99/3)*(√5))=-2/81,97=-0,135.
Мскомый угол равен arccos(-0,135) или α≈97,76°.
Вертикальные углы равны=> угол ВСА=80*
Сумма смежных углов=180* => угол ВСА = 180*-100*=80*
Значит, угол ВСА= углуВАС =80*
В равнобедренном треугольнике углы при основании равны=> треугольник АВС - равнобедренный.
По правилу в равнобедренном треугольнике высота является медианой и биссектрисой.Нам нужно только лишь то,что оно является медианой.Обозначим место пересечения буквой О .В равнобедренном треугольнике АВС, ВО- и медиана ,и высота.В равнобедренном треугольнике АDС ,DС - так же и медиана ,и высота.Значит оба эти отрезка делят общую сторону АС пополам(на 2 одинаковых отрезка) .Делаем вывод из этого,что ВD - серединный перпендикуляр отрезка АС.