В треугольнике АВС , где угол С=90,гипотенуза равна 13,катет =12,найдите оставшийся катет .
Дано:
АВС-треугольник,угол С=90
АС=12
АВ=13
Найти:ВС
Решение
АС²=ВС²+АВ²-по теореме Пифагора
13²=ВС²+12²
ВС²=13²-12²
ВС²=169-144
ВС²=25
ВС=5
Ответ:5
Нужно знать ценр и радиус. Центр середина АБ, а радиус половина длины АБ.
1. Координаты середины О отрезка АБ полусуммы соответствующих координат концов этого отрезка
О(-1; 1).
Длина отрезка АБ
Поэтому уравнение окружности
Периметр треугольника ABD=32см
В параллелограмме АВСD треугольники АВС и АСD равны по трем сторонам (АВ=СD и ВС=АD как стороны параллелограмма, а сторона АС - общая). Итак, Sabc=Sacd.
В треугольниках АВС и АСD ВМ и DМ - медианы (так как диагонали параллелограмма в точке пересечения делятся пополам и АМ=МС).
Но медианы делят треугольники на два равновеликих. Значит, Samb=Smbc=Samd=Scmd (так как равные треугольники АВС и АСD делятся также на два равных).
Итак, площадь параллелограмма АВСD равна четырем площадям треугольника АМВ. Или, что одно и то же, <span>площадь параллелограмма ABCD в четыре раза больше площади треугольника AMB.</span> Что и требовалось доказать.