Точка пересечения BE и AD = K.
Треугольник BAD равнобедренный, потому что биссектриса угла B (то есть - BK) перпендикулярна основанию AD.
AK = KD = 14;
Это означает, что AB = BD = BC/2.
Само собой, отсюда сразу же следует AE = EC/2, поскольку BE - биссектриса.
Если теперь провести через точку E прямую EF II AD, то DF = CF/2; (F лежит на BC)
Это означает, что DF = BD/3; следовательно, KE = BK/3;
Отсюда BK = 21; KE = 7;
AB = √(14^2 + 21^2) = 7√13; BC = 14√13;
AE = √(7^2 + 14^2) = 7√5; AC = 21√5;
Так как сечение - равнобедренный треугольник, то при угле наклона в 60 градусов высота сечения hc = 10/(sin 60°) = 10/(√3/2) = 20/√3 см.
Высота проекции равна: h = 10/tg 60° = 10/√3 см.
Хорда равна: Х = 2h*tg 30° = 2*(10/√3)*(1/√3) = (20/3) см.
Искомая площадь равна:
S = (1/2)*Х*hc = (1/2)*(20/3)*(20/√3) = (200/(3√3)) см².
Третий внешний равен 360-120-160=80 Сумма внеш угл = 360
<span>Да могут. нужно провести две паралелльные прямые и думаю что их нужно зачиркнуть. </span>