2 вроде получается
Если треугольник равнобедренный
А если односторонний то дай знать, решу
Так как у квадрата все стороны равны, а их диагонали при пересечении образуют перпендикуляр, то можно сделать вывод, что полученный четырехугольник - квадрат, а квадрата все стороны равны. Значит ВС=ВД
ч.т.д.
Ваши последние треугольники равны по одному из признаков равенства треугольников: если две стороны и угол между ними одного треугольника, равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Вам дано: равнобедренный треугольник, где отрезок ВD будет являться биссектрисой (по теореме), а значит, угол В делится на два равных угла.
Поэтому у Ваших треугольников выполняется соответствуещее равенство (2 стороны и угол между ними), а именно:
сторона BD - общая
стороны ВМ и BN равны по условию
и угол В, разделенный пополам биссектрисой, лежит как раз между этими сторонами.
Ответ будет неожиданный с кубическими корнями!!!!!!! я напишу через возведение в степень 1/3 опустим высоты на катеты df и dn тогда af и bn искомые проекции af=m bn=l тк уголы с,f,n прямые то и угол d-тоже прямой тогда fcnd-прямоугольник тогда fd=cn=a nd=cf=b по cвойству прямоугольника.Запишем теперь теорему высоту для прямоугольных треугольников сad и cbd df и dn в роли высот то есть верны равенства a^2=mb b^2=al надеюсь понятно. выразим b из 1 и подставим во 2 b=a^2/m (a^2/m)^2=al a^4/m^2=al сократив на a получим a^3=l*m^2 a=(l*m^2)^1/3 по тому же принципу находим b=(m*l^2)^1/3 тогда кавтеты ac=m+(m*l^2)^1/3 bc=l+(l*m^2)^1/3 и наконец по теореме пифагора ab=sqrt((m+(ml^2)^1/3)^2 +(l+(lm^2)^1/3)^2)