По теореме Пифагора
Рассмотрим один из прямоугольных тругольников, катеты будут 15 и 8 ( диоганали делят по полам)
15^2+8^2=225+64=289=17
Р=17*4=68 (у ромба все стороны равны)
Ответ:
Объяснение: Решение : ////////////////////////////
Боковая поверхность - Объединение боковых граней.
Площадь боковой поверхности произвольной призмы S = P * l , где P - периметр перпендикулярного сечения, l - длина бокового ребра.
Площадь боковой поверхности прямой призмы S = Pосн * l
полная поверхность призмы Sполн. = Sбок + 2Sосн
Осевое сечение - это сечение геометрической фигуры, плоскость которой проходит через ось данной фигуры. Сечение конуса, которое проходит через его ось - равнобедренный треугольник, потому как образующие образуют боковые стороны этого треугольника. Имеем равнобедренный треугольник ABC: AB = BC = 2*sqrt(3). CO - высота конуса, которая является и медианой, и биссектрисой в равнобедренном треугольнике, опущенная на основу. Следовательно, угол BCO = углу ACO = 60 градусов. Из прямоугольного треугольника BOC: угол CBO = 90 - 60 = 30 градусов. Катет, который лежит против угла 30 градусов, равен половине гипотенузы: OB = CB/2, OB = sqrt(3) = R. Найдем высоту конуса. Из теоремы Пифагора: CO^2 = CB^2 - OB^2, CO^2 = 12 - 3 = 9, CO = 3 см = H. Площадь основания конуса - это площадь окружности: S = pi*R^2, S = 3*pi см^2.
Объем конуса равен (S*H)/3, V = (3*3pi)/3 = 3pi см^3.
Так как треугольник прямоугольный, можно сказать, что, если разделить его прямой угол на две части, одна из которых будет равна 55, то вторая будет равна 35 градусам.
У нас получилось два маленьких прямоугольных треугольника в одном большом. Сумма углов любого треугольника равна 180 градусов, следовательно, третий угол в маленьком нижнем треугольнике на картинке будет равен 180-(55+90)=35 градусов. Острые углы — это все углы меньше 90 градусов.