Рисуешь катеты и потом соединяешь их.
Х+2х=180
3х=180
<span>х=60
Т.к Сумма смежных углов равна 180 град.
</span>
ВО=5, АО=9, угол А в треугольнике АВО равен 30 градусов, напротив угла в 30 градусов лежит катет, равный половине гипотенузы, АВ =2ВО =10, периметр равен 10+5+9
На фото изображена часть данной пирамиды: ОР-высота пирамиды,
АВ- одна из сторон основания, РК=2√2 -апофема, ∠ОРК угол наклона апофемы к основанию, равен 45°.
∠АОВ=360/12=30°. В основании лежат 12 треугольников, Вычислим площадь одного из них.
ΔРОК. ОР=ОК=2
ОК⊥АВ.
ΔАОК: ∠АОК=30/2=15°. tg15°=АК/ОК; АК=0,27·2=0,54; АВ=0,54·2=1,08.
SΔАОВ=0,5·ОК·АВ=0,5·2·1,08=1,08.
Площадь основания состоит из 12-ти таких треугольников.
Площадь основания пирамиды равна S=1,08·12=12,96.
Объем пирамиды равен V=12.96·2/3=8,64
Ответ : 8,64 куб. ед.