cos B = √(1- sin²B) = √(1- 9/25) = √(16/25) = 4/5 = 0.8.
AB = BC: cos B = 12:0.8 = 15
Острый угол равен 60 градусов, значит, тупой равен 180-60=120 градусов. меньшая диагональ ромба является биссектрисой его тупого угла. Угол между стороной и диагональю равен 120/2=60 градусов. В треугольнике, образованном двумя сторонами ромба и меньшей диагональю, два угла равны 60 градусов, значит, этот треугольник равносторонний => меньшая диагональ равна стороне ромба.
В ромбе все стороны равны.
Периметр равен a+a+a+a=24,8 м (а-сторона)
4а=24,8м
а=6,2м
Ответ: 6,2м
Рассмотрим треугольники АВС и DЕF:
∠BAC = ∠ DFE и ∠ACB = ∠EDF по условию
Пусть <span>AD = CF = х, тогда:
АС = С</span>D + х
DF = СD + х
Отсюда: АС = DF
Следовательно, ΔАВС = ΔDЕF по стороне и прилежащим к ней углам.
В равных треугольниках соответствующие углы равны, следовательно, <span>∠ABC = ∠DEF, что и требовалось доказать.</span>