В равнобедренном треугольнике углы при основании равны.
Рассмотрим ∆ ВСD и ∆ BAЕ. ∠АВС- общий.
∠ВАЕ=∠ВАС-∠САЕ,
∠ВCD=∠ВСА-∠АСD. По условию ∠ЕАС=∠DCА, ⇒ ∠ВАЕ=∠ВСD
Треугольники ВАЕ и ВСD равны по стороне ( АВ=ВС по условию) и прилежащим к ней углам (ВАЕ=ВСD, угол В - общий). Следовательно, ВD=ВЕ. Доказано.
* * *
Вариант решения- доказать равенство треугольников АСD и АСЕ по общей стороне АС и двум прилежащим углам. Тогда при вычитании из равных сторон АВ и СВ равных отрезковостанутся равные BD и ВЕ
Пусть дана окружность радиуса R с центром в точке О и внутри её точка <span>N.
Вычертим отдельно условный равнобедренный треугольник ОАВ и на стороне АВ точка </span>N. ОА и ОВ - это радиусы.
Проведём отрезок ОN, равный расстоянию d от центра до точки <span>N.
Из центра опустим перпендикуляр Оh на сторону АВ.
По условию задания А</span>N:В<span>N = 3:4. Примем коэффициент пропорциональности за х.
Тогда А</span>N = 3х, а В<span>N = 4х. Перпендикуляр Оh делит АВ пополам.
Составляем уравнения из треугольников ONA и Оh</span><span>N.
</span>Оh² = R²-(3.5x)² = R²-12,25x².
Oh² = d²-(0,5x)² = d²-0,25x², отсюда вытекает R²-12,25x²<span> = d²-0,25x².
Приведём подобные: 12x</span>² = R²-d².
Находим коэффициент х =√((R²-d²)/12) = √(R²-d²)/2√3.
Можно определить длину отрезка АN = 3x = 3√(R²-d²)/2√3 = <span>√(3(R²-d²))/2.
Теперь в треугольнике OAN известны 3 стороны, поэтому находим по теореме косинусов косинус угла AON, а по нему и сам угол.
Ответ: от отрезка ON откладываем найденный угол </span><span>AON, проводим радиус ОА и через точки A и N проводим искомую хорду АВ.</span>
Рассмотрим ΔАLМ. ∠АLМ=60°, ∠АМL=30°.
АL=0,5МL=2,5 см.
АМ²=LМ²-АL²=25-6,25=18,75.
АМ=√18,75=(5√3)/4=1,25√3 см.
AC=AB×sin b, sin^2 b=1-cos^2 b, sin^2 b=1-(5/13)^2=1-(25/169)=169/169-(25/169)=144/169, sin b=12/13, AC=13×(12/13)=12