ΔABC - равнобедренный: AB = AC
∠B = ∠C = 72° (углы при основании BC)
Сумма углов треугольника равна 180° ⇒
∠A = 180° - ∠B - ∠C = 180° - 72° - 72° = 36°
Вписанный угол равен половине дуги, на которую опирается ⇒
Дуга ∪BC = 2*∠A = 2*36° = 72°
Ответ: ∪BC = 72°
Дано
a=8см
b=10см
c=12см
Найти
a1;b1;c1
Решение
<span>стороны треугольника (a1;b1;c1;) вершинами которого являются середины сторон данного треугольника (a;b;c)- это средние линии
</span>величина средней линии равна половине соответствующего основания, поэтому
a1=a/2=8/2 =4 см
b1=b/2=10/2=5 см
c1=c/2=12/2=6 см
...........................
Сумма смежных углов равна 180
180/2=90
90+30=120
180-120=60
120/60=2/1
соотношение два к одному.