1) В равнобедренном треугольнике углы при основании равны.
2)В равнобедренном треугольнике биссиктриса проведенная к основанию является медианой и высотой.
Давай обозначим меньшую проекцию (наклонной, которая 13) на базовую прямую незатейливой буквой х. Тогда вторая проекция (наклонной длины 15) будет по условию х+4. Искомое расстояние от точки до прямой обозначим букой Н. Тогда по теореме Пифагора образуется два уравнения:
13 ^2 = x^2 + H^2
15^2 = (x+4)^2 + H^2
Имеем два уравнения с двумя неизвестными. Можно решить. Ну так решим же эту систему методами алгебры.
Проще всего сначала будет исключить Н, тогда получим одно уравнение:
15^2 - (x+4)^2 = 13^2 - x^2
225 - x^2 - 8*x - 16 = 169 - x^2
40 = 8*x
x = 5
То есть первая проекция у нас выходит 5 см, вторая, соответственно, 5+4 = 9 см.
Осталось последнее телодвижение - по теореме Пифагора же находим Н = корень ( 13*13 - 5*5) = корень(144) = 12 см -- это ответ.
Ну, у меня так получилось. Лучше проверь, а то с калькулятором не дружу.
найти объем пирамиды, если в правильной четырехугольной пирамиде сторона основания равна 8 см,а двугранный угол при основании пирамиды равен 60 градусов
пирамида правильная
в основании квадрат
вершина S проецируется в т. М -пересечение диагоналей - центр квадрата
МО=1/2AD=8/2=4
тогда SM=MO*tg60=4*√3
тогда объем пирамиды V=1/3*Sосн* h=1/3*AD^2*SM=1/3*8^2* 4√3=
=256√3 / 3 или 256 / √3
Ответ =256√3 / 3 или 256 / √3
<span>а)
все грани правильной пирамиды равны;
не верно. В правильной пирамиде равны боковые грани, а все грани равны только в тетраэдре.
б) площадь боковой поверхности
правильной усеченной пирамиды равна произведению суммы периметров
оснований на апофему;
не верно, </span><span><span>произведению полусуммы периметров
оснований на апофему</span>
в) боковые грани усеченной пирамиды - трапеции;
верно.
г)
утверждения а-б не верны.
</span>
верно.
50 градус ! потому что угол МСД равен на 90 градус и поэтому мы сделаем так 90-40= 50 !!!!