Получается треугольник АМВ. Чтобы лучше представить возьми учебник, это две плоскости. Приоткрой книгу и поставь между страницами ручку, чтобы книга не закрылась. Ручка это отрезок АВ. Точка М лежит на переплете. У тебя получается равнобедренный треугольник в котором один угол равен 60. Значит он равносторонний. Все стороны будут по 4дм
На рисунке голубым это картина. Вокруг окантовка. Видно что в две стороны увеличилась и Ширина и длина.
Значит обозначаем окантовка =Х
Ширина стала =2х;
Длина= стала 2х;
Площадь с окантовкой стала=558см^2
S -площадь прямоугольника; a -ширина b -длина;
S=a•b;
Уравнение
(10+2х)•(20+2х)=504
10•20+10•2х+2х•20+2х•2х-504=0
200+20х+40х+4х^2-504=0
4х^2+60х-304=0
Разделим на 2 все
2х^2+30х-152=0
D=b^2-4•a•c= 30^2- 4•2•(-152)=
900-8•(-152)=900+1216=2116
X1,2=(-b+-корень из D)/(2•a);
X1=(-30-46)/2•2=-76/4=-19не подходит;
Х2=(-30+46)/2•2=16/4=4 см
Ответ: ширина окантовки 4 см
Опустим из вершин углов при основании ВС высоты ВН и СК к АД.Высоты разделили основание АД на три отрезка.Обозначим отрезок АН=хОтрезок КН = ВС=16 см , поэтому отрезокКД=41-16-х=25-хНайдем квадрат высоты ВН (СК) из прямоугольных треугольников, примыкающих к боковым сторонам, где эти стороны - гипотенузы. ВН²=АВ²-х²СК²=СД²-(25-х)²
АВ²-х²=СД²-(25-х)²225-х²=400 - (625-50х+х²)225-х² =400- 625+50х -х²50х=450
х=9
АН=9 см, ВН=12 см (египетский треугольник)
S=(16+41):2*12=342 cм²