найдем середины отрезков:
1) точка К на отрезке АС: К(-2+0/2;2+0/2) = K(-1;1)
уравнение медианы ВК: х-х1/х2-х1 = у-у1/у2-у1
х-1/-1-1 = у-2/1-4 = 3х-2у + 1 = 0
2) тока L на отрезке АВ: L(-0,5;3)
уравнение медианы CL: х-0/0,5-0 = у-0/3-0 = 3х +0,5у=0
3) точка M на отрезке ВС: M(0,5;2)
уравнение медианы АМ: х+2/0,5+2 = у-2/2-2
х+2/2,5 = 1, х = 0,5
!!!уравнение сторон:
уравнение стороны АВ: х+2/3 = у-2/2 = 2х-3у+10 = 0
уравнение стороны АС: х+2/0+2 = у-2/0-2 = 2у-2х = 0
уравнение стороны ВС: х-1/0-1 = у-4/0-4 = 4х-у = 0
Осевое сечение по условию прямоугольный треугольник, но он еще и равнобедренный, поскольку образующие равны.
Пусть образующая равна а, это и сторона равнобедренного треугольника.
Высота конуса является и высотой в прямоугольном треугольнике, в сечении, проведенная с прямого угла к гипотенузе и на ее середину, поскольку у равнобедренного треугольника высота есть и медиана, проведенная с вершины.
Половина гипотенузы по теореме Пифагора тогда будет:
с/2=√(а²-3²)=√(а²-9)
Вся гипотенуза тогда с=2√(а²-9)
Применим теорему Пифагора к нашему сечению, кот. есть прямоуг. треугольник
(2√(а²-9))²=а²+а²
4(а²-9)=2а²
4а²-36=2а²
2а²=36
а²=18
а=3√2 - образующая, или сторона сечения, катет прямоуг. Δ
Площадь прямоуг. Δ S=1/2*3√2*3√2=9 см² - площадь сечения
Рассматривай треугольники. Решение в прикреплённом ниже файле.
2)Отрезок — это часть прямой, которая ограничена двумя точками, то есть она имеет и начало и конец, а значит можно измерить её длину. Длина отрезка — это расстояние между его начальной и конечной точками.
1)Прямая-это линия,которая не искревляется,не имеет ни начала,ни конца.
3) Если две прямые лежат на плоскости, то возможны три различных случаявзаимного расположения их: 1) прямые пересекаются (т. е. имеют одну общую точку), 2) прямые параллельны и не совпадают, 3) прямые совпадают.