1) Так как центр описанной окружности лежит на пересечении серединных перпендикуляров к сторонам треугольника, а в условии сказано , что этот центр лежит на пересечении высот, то в ΔDEF высоты DH и EK являются серединными перпендикулярами. Так как основания перпендикуляров лежат на серединах сторон, то они явл. ещё и медианами. То есть медианы треугольника DEF - это ещё и высоты. Это может быть только в равностороннем (правильном) треугольнике.
ΔDEF - равносторонний.
2) ΔАВС , ∠С=90°.
По теореме об отрезках касательных проведённых из одной точки , имеем
AM=AN=10 , BN=BP=3 , CM=CP=r - радиус вписанной окружности.
Р=30, P=10+10+3+3+r+r=26+2r ,
30=26+2r , 2r=4 , r=2
3) Точка М лежит на окр. радиуса R=3 см.
Точки, удалённые от т. М на расстояние 2 см, лежат на окружности с центром в точке М и радиуса r=2 см.
Точки, удалённые от центра первой окружности на расстояние 1,5 см , лежат на окружности с этим же центром , точкой О, и r=1,5 см.
Искомые точки будут принадлежать одновременно окружности с r=2 см и окружности с r=1,5 см.То есть это будут точки пересечения окружностей с центрами в точках М и О, с радиусами 2 см и 1,5 см - точки А и В. Задача имеет 2 решения.
Смотри рисунок.
Через две пересекающиеся прямые АВ и АА₁ можно провести плоскость (назовем ее β), которая имеет с плоскостью α общую точку А₁, а значит и прямую пересечения.
ВВ₁║АА₁ и В∈β, значит ВВ₁⊂β,
аналогично, СС₁⊂β.
Тогда точки А₁, В₁, С₁ лежат на одной прямой - прямой пересечения плоскостей.
Плоский четырехугольник АА₁В₁В - трапеция с основаниями АА₁ и ВВ₁.
С - середина АВ и СС₁║АА₁, ⇒ СС₁ - средняя линия трапеции (по признаку).
СС₁ = (АА₁ + ВВ₁)/2 = (12 + 6)/2 = 9 см
<span>Ромб -- это параллелограмм, у которого все стороны равны. Свойство диагоналей ромба: диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам.</span>
в первой задачи все просто
AC : 2 = 3 : 2 = по 1,5
с DB все тоже самое