Апофема - это высота боковой грани. Пусть Н - середина ВС. Тогда SH - медиана и высота равнобедренного треугольника SBC, т.е. искомая апофема.
ΔАВС правильный, АО - радиус окружности, описанной около него, ОН - радиус вписанной окружности.
AO = a√3/3, где а - сторона основания.
AO = 8√3/3 см
ОН = а√3/6 = 8√3/6 = 4√3/3 см.
OA - проекция бокового ребра SA на плоскость основания, значит, ∠SAO = 45°
ΔSAO: ∠SOA = 90°, ∠SAO = 45°, ⇒∠ASO = 45°, ⇒ треугольник равнобедренный, SO = AO = 8√3/3 см.
ΔSOH: ∠SOH = 90°, по теореме Пифагора
SH = √(SO² + OH²) = √(64/3 + 16/3) = √(80/3) = 4√5/√3 = 4√15/3 см
Радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы. Значит, гипотенуза равна 16. По теореме Пифагора найдем второй катет:
Юкон вроде бы
но я могу ошибаться
Ответ:
4/5 или -4/5.
Объяснение:
Если угол лежит в первой четверти, то найдется прямоугольный треугольник с таким углом. Значит, лежащий против угла катет обозначим за 15х, а прилежащий - за 20х. По т. Пифагора найдём гипотенузу: Значит,
Если угол лежит в третье четверти, то