Ответ:
Объяснение:1) 12-это высота, проведенная к основанию , проведи ее и видим прямоуг. Δ с гипотенузой 24 и катетом =24:2=12→∠ при основании =30 ( свойство катета, лежащего против угла 30 градусов! он = половине гипотенузы!)
2)из центра окружности к хорде проводим высоту Δ, получаем , как и в задаче№1 ∠30 при основании Δ. Тогда ∠ между радиусами =180-2*30=120
Сумма всех углов прямоугольного. треугольника равна 180°. Следовательно, 90+36=126, 180-126=54°
Ответ: угол а равен 54°
<em>В основании пирамиды DABC лежит прямоугольный треугольник ABC, угол C=90°, угол А=30°, BC=10. Боковые ребра пирамиды наклонены к плоскости основания под равными углами. Высота пирамиды равна 5. <u>Найдите площадь боковой поверхности пирамиды.</u></em>
Если боковые реба пирамиды наклонены к плоскости основания под равными углами, то <u>вокруг основания можно описать окружность</u>, и основание высоты пирамиды находится в центре этой окружности.
<u>Центр О </u>описанной вокруг прямоугольного треугольника окружности <u>лежит в середине его гипотенузы. </u>
Катет ВС=10, противолежит углу 30°, след. гипотенуза
АВ=2*10=20
Площадь боковой поверхности пирамиды - сумма площадей его граней,
площадь каждой из них найдем по формуле
<em>S=ah.</em>
Для грани, основанием которой является гипотенуза, высота равна 5.
<em>S Δ ADB</em>=DO*AB:2=5*20:2=<em>50</em>
Для треугольника CDB высота
DK²=DO²+OK²
ОК=АС:2
АС=АВ*sin (60)=10√3
ОК=5√3
DK=√(25+ 75)=<em>10</em>
<em>S ΔCDB</em>=10*10:2=<em>50</em>
<span><span>Для АDC высота
DM²=DO²+OM²=√50=5√2
</span><span><em>S ADC</em>=AC*DM:2=<em>25√6</em>
</span>Площадь боковой поверхности пирамиды
<em>Sбок DАВС</em>=S ADB+SCDB+S ADC=<em>100+25</em><span><em>√6 </em></span>
</span>
Из вершины прямого угла С опустим перпендикуляр СМ на гипотенузу АВ. Восстановим перпендикуляры в точках А и М к плоскости АВС. Эти перпендикуляры пересекут плоскость альфа в точках А1 и М1 соответственно. Обозначим длину этих перпендикуляров буквой h, а длину катета треугольника АВС буквой а. Тогда из треугольника АВС находим: СМ = a/ √2. Из треугольника САА1 определяем h = a/ √3. Наконец, из треугольника СММ1 найдём тангенс угла MСM1 - угла между плоскостью АВС и плоскостью альфа
tg(СММ1) = √2/3.