V=S(осн) *h
т. к. дана правильная треугольная призма, то в основаниях лежат правильные треугольники, найдем площадь такого треугольника: S(осн) = а²√3/4=36√3/4=9√3 (см²)
боковое ребро правильной треугольной призмы равно высоте
находим объем:
V=9√3*10=90√3 (см³)
ответ: 90√3 см³
3.
В основании пирамиды квадрат АВСD.
Рассмотрим прямоугольный треугольник FOC( FO⊥плоскости АВСD)
По теореме Пифагора
ОС=4 ( египетский прямоугольный треугольник)
АС=8
АС=BD=8
РN- средняя линия ΔАBD, поэтому PN=BD/2=4
AQ=QO=2 ( так как PN - средняя линия)
Рассмотрим прямоугольный треугольник FQO
FQ²=FO²+QO²=3²+2²=9+4=13
FQ=√13
S(Δ NPF)=PN·FQ/2=2·√13/2=√13 кв ед
4.
В основании пирамиды квадрат АВСD.
Рассмотрим треугольник AFC
AF=FC
Равнобедренный треугольник, угол при вершине 60°, значит углы при основании 120°/2=60°. Треугольник равносторонний и АС=4
АС- диагональ квадрата
Пусть сторона квадрата равна х.
По теореме Пифагора из треугольника АСD
х²+х²=4²
2х²=16
х²=8
S(ABCD)=x²=8 кв. ед
В К С
О
А М Д
Тр-к АМО подобен СКО по трем углам (СКО=АМО=90, КСО=МАО-внутренние накрестлежащие при ВС||АД и секущей АС, КОС=АОМ=90-КСО(МАО)). КС:АМ=2:6=1:3
Из тр-ка АМО ОМ=V7,5^2-6^6=V20,25=4,5. KO=OM:3=4,5:3=1,5
КМ=КО+ОМ=1,5+4,5=6
1. 180=х+2(х-30)
3х=180+60
3х=240
х=80
80-30=50
углы:80, 50, 50