Хорошая задача, заставляющая тряхнуть стариной и вспомнить некоторые трюки, полезные при работе с трапецией.
Трапеция ABCD; AD - большее основание, внизу; BC - меньшее основание, наверху. Перенесем диагональ BD на величину верхнего основания. Другими словами, через точку С проводим прямую, параллельную BD, до пересечения с продолжением AD в точке E. Получился равнобедренный треугольник ACE с боковыми сторонами, равными диагоналям трапеции, то есть AC=CE=50; при этом основание треугольника равно сумме оснований трапеции, то есть удвоенной средней линии; AE=96.
Расстояние между основаниями трапеции равно высоте этого треугольника, найдем ее. Поскольку высота CF равнобедренного треугольника ACE, опущенная на его основание, является также медианой, можем найти CF из прямоугольного треугольника ACF с помощью теоремы Пифагора:
CF^2=AC^2-AF^2=50^2-48^2=4(25^2-24^2)=
4(25-24)(25+24)=4·49=(14)^2⇒CF=14
Замечание. Многие наряду с самым известным прямоугольным треугольником с целыми сторонами (египетским: 3-4-5) знают и несколько других, одним из них является треугольник 7-24-25, стороны которого в 2 раза меньше сторон нашего. Заметив это, можно было избежать применение теоремы Пифагора (впрочем, не знаю, что сказала бы на этот счет Ваша учительница)
Ну,ВО-ПЕРВЫХ, СМЕЖНЫЙ,то есть, который будет в сумме адвать угол = 180 градусам.
1. 180-36= <u>144</u>
2. 180-102= <u>78</u>
ABCD - это параллелограмм, по признаку параллельгости противолежащих сторон. Следовательно, AB = CD = 3 см.
Пусть трапеция ABCD BC=4, AD=12, AB=6. S=BC+AD/2*h h=csinA, h= 6*sin30=3, S=4+12/2*3=24