Пойдем от обратного: если АВСD-прямоугольник, то диагональ прямоугольника будет являться гипотенузой и мы ее найдем по т. Пифагора:
АС²=АВ²+ВС², если принять АВ=х, ВС=2х, тогда
х²+4х²=(5√5)²⇒5х²=25*5⇒х=5
АВ=х=5, ВС=2х=2*5=10.
Проверим: 5²+10²=125 √125=5√5.
АВ=5, ВС=10, АС=5√5-это соотношение выполняется только в прямоугольных треугольниках, ⇒АВСD-прямоугольник, что и требовалось доказать.
Находим проекции боковых рёбер на основание.
Они равны (2/3) высоты основания,то есть (2/3)*(6√3*(√3/2)) = 6.
Проекции точек E и F отделяют на основании отрезки от основания высоты, равные (1/4)*6 = 3/2 и (1/2)*6 = 3.
Получаем проекцию E1F1 отрезка EF на основание как сторону треугольника с двумя известными сторонами (3/2) и 3 и углом между ними 120 градусов.
E1F1 = √((9/4) + 9 - 2*(3/2)*3*cos120°) = √(9 +36 + 18)/2 = √63/2.
Высоты точек E и F от основания равны соответственно (3/4)*4 = 3 и (1/2)*4=2. Разность высот равна 3 - 2 = 1.
Угол между прямой EF и плоскостью основания ABC - это плоский угол между прямыми EF и E1F1.
Отсюда находим тангенс искомого угла.
tg α = 1/(√63/2) = 2/√63 ≈ 0,251976.
Угол α = 0,24684 радиан или 14,14277 градуса.
<em> Длина перпендикуляра, проведенного к прямой a, равна 6 см, а длина наклонной на 2 см больше, чем длина ее проекции на эту прямую. <u>Найдите длину наклонной.</u></em>
Имеем прямоугольный треугольник, в котором
один катет ( перпендикуляр к прямой) равен 6,
а второй ( проекция гипотенузы на прямую а) - неизвестен.
Гипотенуза по условию на 2 см длиннее своей проекции.
Пусть длина проекции равна х,
тогда длина гипотенузы х+2
По т. Пифагора (х+2)²-х²=36
<em>х²+4х+4 -х²=36</em>
4х=32
х=8 см
х+2=8+2=10 см
<span><em> Ответ: наклонная равна 10 см</em></span>
Расстояние от точки до плоскости - перпендикуляр, опущенный из даной точки к этой плоскости. Т.к. ВД перпендикулярна плоскости b, то, в нашем случае, ВД - искомое расстояние.
<em>П</em><em>р</em><em>и</em><em>м</em><em>е</em><em>ч</em><em>а</em><em>н</em><em>и</em><em>е</em><em>:</em> забыла написать что т.к. АВ=ВС, то треуг. АВС - равнобедренный, следовательно, ВН - не только высота, но и медиана. Поэтому АН=НС=6.