Ответ:
108°
Объяснение:
Углов при основании 2, и они равны.
36°*2=72°
Найдём угол между боковыми сторонами.
Сумма углов треугольника - 180°.
180°-72°=108°
BC = 19; KH = 10; Рассмотрим треугольники AKB и BKM (на рисунке одинаковыми цветами отмечены равные углы). Поскольку у них равны два угла, то у них равны и третьи. Т.е ∠BKA = ∠BKM = 180°/2 = 90°. Значит биссектрисы пересекаются под прямым углом. Δ ABN - равнобедренный. Значит BK = KN, в силу того, что AK - медиана. Также Δ ABM равнобедренный. Значит AK = KM; Δ AKN = Δ BKM по двум сторонам и углу между ними. В равных треугольниках равны соответствующие элементы, значит высоты TK и KE равны. Треугольники HBK и TBK равны по углу и общей гипотенузе. Следовательно HK = KT = KE; Теперь найдем площадь S. S = BC*(TK+KE) = 2*BC*HK = 2*19*10 = 380
Ответ:
Так как АД=ВД, то треугольник АДВ-равнобедренный, значит биссектриса угла АДВ делит сторону АВ пополам и является медианой. Отрезок проведенный из вершины угла С к середине АВ также является медианой, а следовательно СД- биссектриса угла АСВ.
Объяснение: