Для нахождения площади боковой поверхности найдём площадь грани
S(грани)=f*a/2=10*13/2=65 (см²).
S(бок)=S(грани)*n=65*3=195 (см²)
А для площади полного поверхности надо площадь основания:
Большая сторона - с, тогда Мс - медиана, проведенная к большей стороне.
Ответ: медиана, проведенная к большей стороне равна 2 корня из двух.
Док-во:
ΔABC - равносторонний ( по условию)
⇒ углы ABC, BCA, CAB = 60 градусов.
Доп. построение:
продлим прямую AC и отметим на ней т.F
углы ACB и BCF - смежные.
угол BCF = 180 - 60 = 120 град.
⇒ при повороте треугольника ABC на 120 градусов, он займет такое же положение в пространстве, что и до этого.
ΔMNK подобен ΔABC ( т.к. все линии ΔMNK соединяют середины сторон равностороннего ΔABC)
⇒ средняя линия MN перейдёт в среднюю линию NK, что и требовалось доказать.
По условию задачи в сновании находится прямоугольный треугольник, (по квадратам сторон: 6²+8² = 10²).
Так как грани наклонены под равным углом к основанию, то проекции рёбер на основание находятся на биссектрисах треугольника основания. Ось пирамиды находится на пересечении биссектрис.
Отсюда вывод: высота пирамиды равна радиусу вписанной в треугольник окружности. Радиус вписанной в прямоугольный треугольник окружности равен:
r = (a+b-c) / 2 = (6+8-10) / 2 = 2. Тогда и высота Н = 2. а апофема - 2√2.
Площадь боковой поверхности пирамиды равна:
Sбок = (1/2)Р*r = (1/2)*(6+8+10)*2√2 = 24√2.
Площадь основания So = (1/2)6*8 = 24.
Площадь полнойповерхности пирамиды равна 24√2 + 24 = 24(1+√2) = <span><span>57.94113.</span></span>
Т к треугольник равносторонний то длина одной стороны будет =Р/3=12 под корнем 3 см/3= 12 под корнем