Высота, проведённая к основанию трапеции, делит трапецию на квадрат ( по условию) и ПРЯМОУГОЛЬНЫЙ треугольник, острый угол которго равен 45' градусов. Этот прямоугольный треугольник является равнобедренным, т.к. по теореме о сумме уголов треугольника <1+<2+<3=180'. <1=<2=45', а <3=90'. В равнобедренном треугольнике боковые стороны равны. В данном случае - это катеты. Обратимся ко второй фигуре - квадрату. Известно, что его площадь - 36 кв. см. Найдём сторону квадрата: а= 36:6, а=6 см. Найдём площадь треугольника: S=1/2ab, т.к. в данном треугольнике боковые стороны равны, то S=1/2aа, S=18 кв. см. Теперь найдём сумму площади квадрата и треугольника, получим сумму всей фигуры, в данном случае - трапеции S= 36+18=54 кв. см
По теореме синусов сторона АВ = (7*sin β )/ sin α.
AH = AB*cos α = (7*sin β*cos α )/ sin α =7*sin β*ctg α.