Параллелограмм АВСД, треугольник АВК прямоугольный, равнобедренный уголАВК=90-уголА=90-45=45=уголА, АК=ВК=4, АВ=корень(АК в квадрате+ВК в квадрате)=корень(16+16)=4*корень2=СД, площадь АВСД=СД*ВН=4*корень2*7=28*корень2
Угол-знак угла
Дано:
∆АВС; угол BAD=110°; угол ECK=35°;
Найти:
углы ∆АВС
Решение:
угол ВАD u угол ВАС смежные → угол
ВАС=180°-уголВАD=70°
угол ЕСК и угол ВСА вертикальные, значит, угол ЕСК=углу ВСА=35°
угол АВС =180°-(угол ВАС + угол ВСА)= 180°-105°=75°
Ответ: угол АВС=75°; угол ВСА=35°; угол ВАС=70°.
Площадь боковой поверхности 3х3=9
v= 9х5=45
а полная поверхность-сумма всех граней
Так как в равнобедренном треугольнике высота, проведенная к основанию, является медианой и биссектрисой, высота и биссектриса, о которых идет речь проведены из вершины при основании.
Высота и биссектриса отличаются в 2 раза. Проведены они к одной стороне, значит высота в 2 раза меньше биссектрисы (перпендикуляр к прямой всегда меньше наклонной)
АН - высота, АМ - биссектриса.
АМ = 2АН, тогда в прямоугольном треугольнике АМН ∠АМН = 30°.
Обозначим ∠МАС = х, тогда ∠ВАС = ∠ВСА = 2х.
Для треугольника МАС угол АМВ - внешний, равен сумме двух внутренних, не смежных с ним.
∠АМВ = ∠МАС + ∠МСА = х + 2х = 3х
1) Пусть ΔАВС остроугольный, тогда ∠АМВ = 180° - 30° = 150°
3x = 150°
x = 50°, но тогда углы при основании равнобедренного треугольника равны по 100°, что невозможно.
2) ΔАВС - тупоугольный. ∠АМВ = 30°
3x = 30°
x = 10°
∠ВАС = ∠ВСА = 20°
∠АВС = 180° - (20° + 20°) = 140°