Limx³(1/x³-5/x²)/x³(1+1/x)=lim(1/x³-5/x²)/(1+1/x)=(0-0)/(1+0)=0/1=0
B2 = b1 * q
b7 = b1 * q^6
b7 / b2 = q^5
16 / 0,5 = q^5 --> 32 = q^5 --> q = 2
b1 = b2 / q = 0,5 / 2 = 0,25
дальше находим нужные члены:
b3 = b1 * q^2 = 0,25 * 4 = 1
b4 = b1 * q^3 = 0,25 * 8 = 2
b5 = b1 * q^4 = 0,25 * 16 = 4
b6 = b1 * q^5 = 0,25 * 32 = 8
X = 8+2y
(8+2y)² + 2y² = 22
64 + 32y + 4y² + 2y² = 22
3y² + 16y + 21 = 0
D=16²-12*21=2²
y₁ = (-16-2)/6 = -3 ---> x₁ = 8-6 = 2
y₂ = (-16+2)/6 = -7/3 ---> x₂ = 8 - 14/3 = 10/3