А)15-8-а=7-а
б)(56+220)-13-б=263-б
В)27-300+21+9+б=243+б
г)12+5+34+53+а-б=104+а-б
Точка М равноудалена от АВ и АС, значит она лежит на биссектрисе АМ угла ВАС, пусть МС=Х, тогда АВ/ВМ=АС/МС. 5/(3-Х)=7/Х, Х=1,75=МС.
<span>Дано: АВС - прямоугольный треугольник. < С=90 BC=12 r=5 </span>
<span>AB=AC-r+BC-r=AC+2 </span>
<span>По теореме Пифагора </span>
<span>AC^2+BC^2=AB^2 </span>
<span>AC^2+144=AC^2+4AC+4 </span>
<span>4AC=140 </span>
<span>AC=35 </span>
<span>Sabc=AC*BC/2=35*12/2=210</span>
Ответ: На 4 треугольника.
Объяснение:
Соединив одну вершину выпуклого шестиугольники с остальными, мы проводим диагонали. <em>Из одной вершины многоугольника можно повести n-3 отрезка</em> ( диагоналей), где n - количество сторон ( вершин). т.к. выбранная вершина уже соединена с соседними сторонами многоугольника, и ее саму нельзя соединить с самой собой).
Следовательно, можно провести 6-3=3 отрезка, которые разделят выпуклый шестиугольник ( неважно, правильный или произвольный) на 4 треугольника. (<em>см. рисунок</em>)
а). Координаты вектора равны разности соответствующих координат точек его конца и начала: ВС{0-2;7-(-6)} или ВС{-2;13}.
б). Модуль вектора (его длина) равен квадратному корню из суммы квадратов его координат: АВ{-4;-2}, |AB|=√(16+4)=√20 =2√5.
в). Координаты середины отрезка равны полусуммам соответствующих координат начала и конца отрезка: Xm=(Xa+Xc):2 = (2+0)/2=1. Ym=(Ya+Yc):2=(-4+7)/2 =1,5. M(1;1,5).
г). |AB|=2√5 (найдено выше). |ВС|=√((Xc-Xb)²+(Yc-Yb)²) или √((-2)²+13²)=√(4+169) =√173. |AC|=√((Xc-Xа)²+(Yc-Yа)²) или √(4+121)=√125=5√5. Периметр Р=АВ+ВС+АС или Рabc= 7√5+√173.
д). |BM| = √((Xm-Xb)²+(Ym-Yb)²) или |BM|=√(3²+7,5²) = √65,25 ≈ 8,08.