1
Если известны величины двух углов произвольного треугольника (β и γ), то величину третьего (α) можно определить исходя из теоремы о сумме углов в треугольнике. Она гласит, что эта сумма в евклидовой геометрии всегда равна 180°. То есть для нахождения единственного неизвестного угла в вершинах треугольника отнимайте от 180° величины двух известных углов: α=180°-β-γ.2Если речь идет о прямоугольном треугольнике, то для нахождения величины неизвестного острого угла (α) достаточно знать величину другого острого угла (β). Так как в таком треугольнике угол, лежащий напротив гипотенузы, всегда равен 90°, то для нахождения величины неизвестного угла отнимайте от 90° величину известного угла: α=90°-β
ГЛАВА II.
ТРЕУГОЛЬНИКИ.
§ 30. СООТНОШЕНИЯ МЕЖДУ СТОРОНАМИ И УГЛАМИ ТРЕУГОЛЬНИКА.
Теорема 1. Против большей стороны в треугольнике лежит и больший угол.
Пусть в /\ АВС сторона АВ больше стороны ВС. Докажем, что угол С, лежащий против большей стороны АВ, больше угла А, лежащего против меньшей стороны ВС (черт. 164).
Отложим на стороне АВ от точки В отрезок ВD, равный стороне ВС, и соединим отрезком , точки D и С.
Треугольник DВС равнобедренный. Угол ВDС равен углу ВСD, так как они лежат против равных сторон в треугольнике.
Угол ВDС — внешний угол треугольника АDС, поэтому он больше угла А.
Так как / ВСD = / ВDС, то и угол ВСD больше угла А: / ВСD > / A. Но угол ВСD составляет только часть всего угла С, поэтому угол С будет и подавно больше угла A.
Доказать самостоятельно ту же теорему по чертежу 165, когда ВD = АВ.
В § 18 мы доказали, что в равнобедренном треугольнике углы при основании равны, т. е. в треугольнике против равных сторон лежат равные углы. Докажем теперь обратные теоремы.
Теорема 2. Против равных углов в треугольнике лежат и равные стороны.
Пусть в /\ AВС / A = / С (черт. 166). Докажем, что AВ = ВС, т. е. треугольник АBС равнобедренный.
Между сторонами АВ и ВС может быть только одно из трёх следующих соотношений:
1) АВ > ВС;
2) АВ < ВС;
3) АВ = ВС.
Если бы сторона AВ была больше ВС, то угол С был бы больше угла A, но это противоречит условию теоремы, следовательно, АВ не может быть больше ВС.
Точно так же АВ не может быть меньше ВС, так как в этом случае угол С был бы меньше угла A.
Следовательно, возможен только третий случай, т. е.
АВ = ВС
Итaк, мы доказали: против равных углов в треугольнике лежат и равные стороны.
Теорема 3. Против большего угла в треугольнике лежит большая сторона.
Пусть в треугольнике АВС (черт. 167) / C >/ B
Докажем, что АВ > АС.
Здесь также может быть одно из трёх следующих соотношений:
1) АВ = АС;
2) АВ < АС;
3) АВ > АС.
Если бы сторона АВ была равна стороне АС, то / С был бы равен / В. Но это противоречит условию теоремы. Значит, АВ не может равняться АС
Точно так же АВ не может быть меньше АС, так как в этом случае угол С был бы меньше угла B, что также противоречит данному условию.
Следовательно, возможен только один случай, а именно:
АВ > АС.
Мы доказали: против большего угла в треугольнике лежит и большая сторона.
Следствие. В прямоугольном треугольнике. гипотенуза больше любого из его катетов.
Решение:
S = a2 sin α = 900 sin 4 ≈ 62.78081332975914
дано
тр. ABC
угол С = 90
угол В = 60
AB = с
найти
AC - ?
решение
угол A = 180-90-60 = 30
След-но CB = 1/2*AB = c/2
По т. Пифагора:
CB=√AB²-AC²
CB=√c²-(c/2)²=√c²-(c²/4)=√3c²/4=c√3/2
ответ
<u>сторона лежащая против угла в 60 гр. равна с√3/2</u>