Если вариант ответа то 3. 4:9. Если решение - пишите.
Против меньшего катета дежит меньший угол
Определим гипотенузу с²=48²+14²=2304+196=2500.
с=√2500=50
sinα=14/25=0,56.
α=34°.
Достроим радиус ОМ до диаметра МК
МК перпендикулярен хорде АВ, т.к. ОМ перпендикулярен касательной, которая параллельна АВ. (св-во радиуса, проведенного в т. касания)
По свойству хорде, перпендикулярной к диаметру: AV=VB=36/2=18
Проведем радиус в т.А
Из прямоуг. тр-ка АОV:
по т. Пифагора: OV²=AO² - AV²
OV²=6724-324=6400
OV=80
Отрезок MV-искомое расстояние- равен ОV+OM=80+82=162
Ответ: 162
Рисуем треугольник АВС. Угол А - прямой.
Проводим высоту АК на сторону СВ.
ВК = 6 см
КС = 2 см
Составляем уравнения теоремы Пифагора
АК^2 = AC^2 - KC^2
или
АК^2 = AC^2 - 4 [уравнение 1]
AK^2 = AB^2 - BK^2
или
AK^2 = AB^2 - 36 [уравнение 2]
AB^2 + AC^2 = BC^2
или
AB^2 + AC^2 = 64 [уравнение 3]
Складываем уравнени [1] и [2]
2 * АК^2 = AC^2 + AB^2 - 40
Вместо суммы квадратов катетов подставляем значение квадрвта гипотенузы из уравнения 3
2 * АК^2 = 64 - 40
АК^2 = 12
Находим катет АС
АС^2 = AK^2 + KC^2 =
AC^2=12 + 4 = 16
AC = 4 см
sin В = АС/СВ = 4/8 = 1/2
В = 30 гр
<span>С = 60 град </span>