Первое задание по функции заданой формулы я смог решить, а вот второе я не понял.. Удачи..
Б)
При у= -1 (-1)³ -1+2=-1-1+2=0
у= -1 - корень уравнения.
у³+у+2=(у+1)(у² -у+2)
(у+1)(y² -y+2)=0
a) y+1=0 b) y² -y+2=0
y= -1 D=1-8= -7<0
нет решений.
, n∈Z
Ответ:
n∈Z.
в)
При у=0
При у=(+/-)√3
, n∈Z
Ответ:
n∈Z;
∈Z.
д) 1+cos2x+sin2x=0
1+cos²x-sin²x+2sinxcosx=0
cos²x+sin²x+cos²x-sin²x+2sinxcosx=0
2cos²x+2sinxcosx=0
cos²x+sinxcosx=0
cosx(cosx+sinx)=0
a) cosx=0
, n∈Z.
б) cosx+sinx=0
, n∈Z
Ответ:
, n∈Z;
, n∈Z.
1) x²+5*x-6≥0. Решая уравнение x²+5*x-6=0, находим x1=1, x2=-6.
Если x<-6, то x²+5*x-6>0.
Если -6<x<1, то x²+5*x-6<0.
Если x>1, то x²+5*x-6>0.
Значит, x∈(-∞, -6]∪[1,+∞). Ответ: x∈(-∞, -6]∪[1,+∞).
2) 5*x²-3*x-2≥0. Решая уравнение 5*x²-3*x-2=0, находим x1=1, x2=-2/5.
Если x<-2/5, то 5*x²-3*x-2>0.
Если -2/5<x<1, то 5*x²-3*x-2<0.
Если x>1, то 5*x²-3*x-2>0.
Значит, x∈(-∞, -2/5]∪[1,+∞). Ответ: x∈(-∞, -2/5]∪[1,+∞).
Π/3-2x=+-π/3+2πn
-2x=-π/3-π/3+2πn
-2x=-2π/3+2πn
x=π/3+πn
Или
-2x=π/3-π/3+2πn
-2x=2πn
x=πn
Уравнение касательной y=f'(x0)(x-x0)+f(x0)
f'=1/3 f(1)=1/3 y=(1/3)(x-1)+1/3