Медиана равна половине гипотенузы в прямоугольном треугольнике.
То есть CM = BM = MA
CM = MA ⇒ ΔCMA - равнобедренный ⇒ ∠MCA = ∠CAM
Сумма углов треугольника равна 180°
∠MAC + ∠ACM + ∠CMA = 180°
2∠MAC + 20° = 180°
2∠MAC = 160°
∠MAC = 80°
∠BMC и ∠CMA - смежные, их сумма равна 180°
∠CMB = 180° - ∠CMA = 180° - 20° = 160°
CM = MB ⇒ ΔCMB - равнобедренный ⇒ ∠MCB = ∠ABC
Сумма углов треугольника равна 180°
∠ABC + ∠BCM + ∠CMB = 180°
2∠ABC + 160° = 180°
2∠ABC = 20°
∠ABC = 10°
Ответ: ∠MAC = 80°, ∠ABC = 10°
1) ЕК - ЕF=FK
11-4=7(см)-длина FK
2) FP=KP+FK
14+7=21(см)-длина FP
Координаты середины АВ, т.е. ищем как полусумма соответствующих координат концов отрезка АВ.
(6/2); ((7+3)/2); (( 1-1)/2))
(3;5;0)
Теперь для отрезка МА серединой является точка В(0;3;-1)
Если обозначить координаты искомой точки М через (х;у;z),то получим такую систему уравнений
(6+х)/2=0
(7+у)/2=3
(1+z)/2= -1
из первого уравнения х=0-6= -6, из второго уравнения найдем у=2*(-1)-1= -3
из третьего z=-2-1= -3
Значит, М(-6;-1;-3)
Ответ координаты середины отрезка АВ такие х=3, у=5, z=0
М(-6;-1;-3)
Удачи.
Решение в прикрепленном файле.
Тангенс есть отношение противолежащего катера к прилежащему
здесь тангенс равен 4