Сформулируйте и докажите признак равенства равнобедренных треугольников по основанию и углу при основанииТеорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Доказательство.Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса.Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников:AD-общая;углы 1 и 2 равны т.к. AD-биссектриса;AB=AC,т.к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана. <span>В равнобедренном треугольнике углы при основании равны. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой Если в треугольнике два угла равны, то он равнобедренный. Если в треугольнике медиана является и высотой, то такой треугольник равнобедренный. </span>
<em> </em><em>Задача про параллелограмм</em>
<em>Площадь треугольника равна половине произведения двух его сторон на синус угла между ними: S (abc) = (1/2)•BC•AC•sin∠ACB</em>
<em>В параллелограмме диагональ делит его на два равных треугольника ⇒ S (abc) = S (acd)</em>
<em>S (abcd) = S (abc) + S (acd) = 2 • S (abc) = BC•AC•sin∠ACB = 12,5•18•sin30° = 12,5•18•0,5 = 112,5</em>
<em>Ответ: 112,5</em>
<em />
CosB= AC/BC=>
3/4=x/12=>
X=12*3/4=36/4=9
Дано: прямоугольная трапеция АВСД. S - ?
S=(ВС+АД)*СД/2 - полусумма оснований на высоту.
Рассм. ΔВСД; по т.Пифагора ВС²+СД²=ВД²
СД²=11²-9²=(11-9)(11+9)=20*2; СД=√40=2√10
S=(12+9)*2√10/2=21√10 - это ответ.
Если в треугольнике медиана является высотой, то такой треугольник равнобедренный (признак равнобедренного треугольника)
Ответ: С.